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Abstract: 

We identify decision points in standard engineering work processes where adjustments should be made to assist 

design teams to evaluate climate change related design impacts.  Early in the project, design options should be 

evaluated to optimize the combined greenhouse gas (GHG) reduction benefits of interfacing building systems.  

In the conceptual design stage, GHG emission reducing alternatives can be evaluated and incorporated into the 

design.  In addition, sustainable GHG reducing engineering, procurement and construction approaches should be 

evaluated and adopted early in the project for cross-functional benefits to the project and to the client  

In the preliminary engineering phase emission monitoring and control of greenhouse gases may be considered.  

Closed-loop processes may also be considered to minimize potable water use and wastewater generated.  In this 

design phase, future site climatic conditions should be considered, in addition to developing criteria based on 

historical norms.  In the final design phase, when specifications and material requisitions are developed, they 

should include GHG reducing requirements for high performance building systems including: energy efficient 

HVAC, lighting and building envelope systems; water conserving utility systems and processes; recycled or 

rapidly renewable materials content; and fuel efficiency standards for construction site vehicles. 
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1 Introduction 

Growing and potential impacts of climate change (Karl et al [1]), such as flooding in coastal areas, 

change in weather patterns, and melting of the permafrost have created new challenges for the 

engineering and construction industry.  These challenges involve adaptation in the design and 

construction of projects to address these impacts, as well as developing ways to reduce and 

controlling greenhouse gas (GHG) emissions to mitigate climate change.   

Engineering has the lead responsibility for determining the technical feasibility and cost parameters to 

overcome these challenges.  Engineering and construction projects are implemented with the help of a 

set of standard documents that lay out the work process of the projects.  They include standard design 

detail drawings, standard design criteria, standard specifications, design guides and work process flow 

diagrams.  Incorporating in these standard documents materials and processes which assist project 

engineers to identify and assess climate change related impacts can be a major step in effectively 

preparing to meet the challenges of climate change mitigation and adaptation. 

 

2 Optimizing the Design Process 

In many respects designing to meet climate change challenges is sustainable design.  A project 

execution approach integrating the following concepts for sustainable engineering, procurement and 

construction (S-EPC) is directly relevant to designing for climate change: 

• Site master planning and design for ecology 

mailto:pmattana@bechtel.com
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• Potable water conservation, and minimizing waste water discharges  

• Process design to conserve water, energy and other natural resources 

• Design provisions for phased construction to meet current needs with provisions for meeting 

future facility requirements; provisions for adding sustainable design measures in future phases of 

construction, if not funded in the initial phase  

• Passive design of facilities to save energy in plant and building operations, e.g.  Energy Star® 

roofs or green (vegetated) roofs; adequate insulation of building walls, roofs, pipes, ducts and 

vessels, to minimize fossil-fueled power consumption and emissions 

• High-efficiency HVAC and electrical systems including high-performance lighting systems 

integrated with daylighting and smart controls 

• Energy Star® appliances and equipment  

• Onsite renewable energy with energy storage for peak use, meeting the power demand that has 

been reduced by all of the above concepts, and resulting in reduced fossil fuel demand / 

emissions. 

• Eco-purchasing and contracting:  “greening” the supply chain to minimize climate change impacts 

of the supply chain. 

• Managed construction to protect the site’s natural resources, minimize pollution and waste and 

recycle or salvage surplus materials.  

• Neutralizing any additional capital costs by combining “hard” benefits (life-cycle cost savings and 

returns on investment) with “soft” benefits (intangible but real and significant). 

Similarly formulated sustainable design concepts can be found as the Hannover principles (William 

McDonough & Partners [2]), the Twelve principles of green engineering (Anastas and Zimmerman 

[3]) and ten tenets of structural sustainability (D’Aloisio [4]). 

Designs informed by an integration of these concepts, with inter-discipline and cross-functional trade-

offs for overall optimization of the project, are more energy efficient, minimize GHG emissions and 

adapted to a changing climate. They add value to the standard engineering work execution by better 

integrating the design of systems. The combined benefit of the overall optimization is greater than if 

the systems are optimized individually. The benefits include significant reductions in energy and 

water requirements leading to lower GHG emissions and resulting in cost savings in construction and 

facility operations, as well as reduced impact on the site and the environment.  

To implement sustainable design, the standard engineering work process needs to be enhanced to 

foster closer collaboration among disciplines and functions.  For cost-effective success, sustainable 

design should be embedded as an integral part of the engineering work process.  Designing to meet 

climate change challenges does not have to be an "add-on" to the current work process.  Figure 1 

provides an overview of the standard work process with some notes on sustainable design related 

activities that can be integrated into the standard process. 

 

3 Conceptual Design 

The conceptual design phase is when sustainable design, climate change mitigation and adaptation 

features can be most easily incorporated into a project.  Establish a multi-disciplinary team of project 

personnel and hold an integrated sustainable design team planning meeting early in project 

development.  This integrated team does more than coordinate; it collaborates throughout all project 

phases and includes engineering, procurement, construction, the client, operator and other 

stakeholders.  The team can be established as an integrated project team following U.S. Department of 

Energy (U.S. DOE [5]) or U.S. Department of Defense (U.S. DOD [6]) or similar guidelines. 

This group should establish sustainability and GHG emission performance goals:  e.g., 25-percent less 

energy use than required by code, 30-percent reduction in GHG emissions relative to a baseline 

facility providing the same products or services.  The team should document the goals in the project 

execution plan and/or relevant discipline engineering design criteria.   

The integrated design team ensures collaborative work among all disciplines to embed sustainable 
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design concepts, sustainable systems, green fabrication and construction techniques into the 

development of the project design and systems selection.  It helps the project team evaluate 

alternatives to optimize the overall systems / process / facility design and realize the benefits of 

sustainable design.  

Expertise in sustainable design methods, including energy modeling and building information 

modeling, may or may not be available “on-project”.  Depending on the project and scope of 

sustainable design, experts in energy modeling, wetland design, stormwater management, energy-

efficient lighting should be made available to the project from off-project staff or consultants, as 

needed. Accreditation by the U.S. Green Building Council for LEED™ is highly desirable for 

members of the integrated design team. 

Table 1 provides examples of climate change related sustainable design performance metrics that can 

be used to establish these goals.  A broader set of metrics is available from the Institution of Chemical 

Engineers (IChemE).  The Leadership and Energy and Environmental Design (LEED™) building 

rating system also provides a framework for setting project performance goals 

Table 2 provides a list of GHGs associated with specific industrial sectors.  Table 3 provides the 

major emission categories, with a representative list of devices that fall into each of these categories. 

During conceptual design, the integrated sustainable design team evaluates design alternatives. Project 

facilities, process and mechanical equipment, and building components or features should be 

evaluated based on their sustainability as well as feasibility and cost-effectiveness.  The team should 

consider the maturity of the technology of the building, facility or process feature; the capital 

expenditure (i.e., first cost) required to procure, install, and implement the facility, building or process 

feature under consideration; the acceptable time horizon to repay the initial capital expenditure 

through savings made via operating and maintenance costs over the life of the feature; and the carbon 

emitted during the construction and operation of the facility, building or process feature.  

Consider alternatives to: 

• Maximize energy efficiency and minimize GHG emissions by: 

- Selection of a suitable location and orientation for the facilities on the site and their 

configurations and proportions to minimize energy loads (and thus GHG emissions) on the 

building due to climate at the site and to take advantage of passive solar and wind 

opportunities 

- Preservation of natural site features, restoration of degraded habitat areas, and minimize 

facility footprint to preserve the maximum open space and undisturbed land 

- Providing for natural daylighting, renewable energy, and natural ventilation 

- Selecting high-efficiency HVAC systems that exceed ASHRAE 90.1 requirements 

(ANSI/ASHRAE [7]) 

- Providing light-colored roofing to reflect light and heat 

- Sealing joints and airlocks prior to sizing mechanical conditioning systems to avoid over-

sizing equipment 

- Reclaiming waste heat from equipment and return air and water 

- Installing vegetated rooftops 

- Maximizing the efficiency of electric power distribution; size transformers close to the actual 

anticipated load; distribute power at the highest practical voltage at the maximum power 

factor 

- Maximizing service water heating and cooling efficiency, and considering solar hot water 

heating 

• Maximize water efficiency by: 

- Collection and reuse of rainwater 
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- Closed-loop processes to conserve water and other resources 

- Alternative wastewater treatment system selection.  Consider waste water from processes for 

possible treatment and reuse as grey water, if permitted. 

- Developing self-sustaining landscapes using native plants tolerant of soils, climate, and 

drought with minimal irrigation using harvested rainwater or grey water 

- Specifying water-efficient plumbing such as ultra-low-flow or waterless plumbing 

- Protect or restore the existing site hydrology 

• Minimize the embodied energy and carbon content of materials by 

- Considering off-site pre-fabrication to minimize onsite cutting and waste. 

- Designing for constructability and potential reuse 

- Develop energy and emissions criteria to include in materials requisitions 

The conceptual design should include development of a simplified energy model, a preliminary 

estimate of GHG emissions and embodied carbon content, a preliminary lifecycle cost estimate and a 

3-D model with preliminary building information.  These design documents and models are used 

throughout the design process to assess progress toward meeting the sustainable design goals.  Upon 

completion of these and other design deliverables, conduct the first review of the sustainable design 

aspects of the project during the project’s first design review.  This review should check that the 

sustainability goals established earlier, including energy efficiency, GHG emissions, water efficiency 

and materials content are being met.  The National Renewable Energy Laboratory has a handbook for 

planning and conducting charrettes for high-performance projects that may be helpful in preparing for 

the sustainable design portion of the design review (NREL [8]). 

Compare preliminary energy model results with sustainable design performance benchmarks, using 

readily available software for: energy requirements simulation; renewable energy; water conservation; 

and lighting and daylighting analysis.   

GHG emissions may be estimated for sources classified according to a scheme similar to that 

provided on Table 3 for the petroleum industry (API [9]).  Table 3 provides the major emission 

categories, with a representative list of devices that fall into each of these categories.  The GHG 

Protocol for Project Accounting developed by the World Business Council for Sustainable 

Development (WBCSD) and the World Resources Institute (WRI/WBCSD [10]) appears to be the 

protocol most suitable for use developing design basis GHG emissions estimates.  The U.S. Energy 

Information Administration provides emissions coefficients for a number of fuels combusted for 

energy generation here:  www.eia.doe.gov/oiaf/1605/coefficients.html (last accessed 30 Aug 2010). 

Useful guides to life-cycle cost estimates are provided by ASTM International and the U.S. 

Department of Energy.  ASTM E 917-05 is a standard practice for measuring life-cycle costs of 

building and buildings systems (ASTM International [11]).  The U.S. DOE’s guidance is for life-cycle 

cost analyses required by Executive Order 13123, Greening the Government through Efficient Energy 

Management (U.S. DOE [12]). 

A number of resources are available to check the embodied energy and carbon content of materials.  

The University of Bath, Department of Mechanical Engineering, maintains a database of the 

embodied carbon dioxide and energy content of building materials.  A summary of the coefficients in 

the database is periodically published and is available here:  www.bath.ac.uk/mech-

eng/sert/embodied/ (last accessed 30 Aug 2010).  The embodied energy and carbon dioxide refers to 

the total primary energy consumed and carbon dioxide released over the life-cycle of the construction 

material.  With the life-cycle boundary being defined as all energy and carbon dioxide emissions from 

the extraction of raw materials through manufacturing up to the point where the materials leave the 

manufacturing facility. 

 

http://www.eia.doe.gov/oiaf/1605/coefficients.html
http://www.bath.ac.uk/mech-eng/sert/embodied/
http://www.bath.ac.uk/mech-eng/sert/embodied/
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4 Preliminary Design 

During preliminary design develop the facility energy model to confirm the design meets the 

established performance goals; calculate facility operations GHG emissions and materials embodied 

carbon content; develop a facility life-cycle cost estimate; include building information in the 3-D 

model.  Periodically update these calculations and verify the project continues to meet the sustainable 

design performance goals as design progresses. 

Continue to promote an integrated work process among all disciplines with early inputs from 

procurement, project controls and construction to assure continued implementation of the established 

sustainable design scope during systems selection. The following tasks are included in this design 

phase: 

• Include sustainable engineering concepts in system design descriptions and facility design 

descriptions.  Right-size systems and facilities using software models (not conventional rules-of-

thumb), avoid over-design.  

• Identify energy consumption by category, e.g., internal loads from the processes, building 

envelope loads (heat losses / gains through walls, roofs, etc.), ventilation requirements, and 

others.  

• Identify energy interactions between systems and opportunities for reductions in energy 

requirements and cost savings through energy efficiency measures. 

• Develop alternative design solutions to reduce energy loads and evaluate systems as a whole. 

• Iterate these optimization steps and refine the system selection / design to arrive at the optimized 

combination of systems for energy efficiency and emissions reduction. 

• Update the energy model, emissions calculations, cost estimate and 3-D model to reflect the 

design, as it develops. 

Conduct a second review of progress toward meeting energy and emissions goals on the project, after 

the design concept is developed.  This review can be concurrent with other required design reviews 

and is intended to confirm continued progress toward meeting the established sustainable design 

criteria. 

 

5 Detailed Design 

Continue to promote an integrated work process among all disciplines to assure continued 

implementation of the established energy efficiency and emissions reduction goals.  Specify low 

embodied CO2 and energy content materials.  Include embodied energy and CO2 evaluation criteria in 

technical bid evaluations.  Specify materials available locally. 

Develop a construction execution strategy that minimizes construction energy consumption and 

greenhouse gas emissions.  Consider construction waste management options, construction vehicle 

options, etc. 

Finalize the: 

• Energy model 

• 3-D model with building information 

• GHG emissions calculations 

• Life-cycle cost estimate 

Conduct a third and final review of the design relative to the energy efficiency and emissions 

reduction goals. 

Assist procurement with evaluating and pre-qualifying potential bidders for materials, systems and 

sources to support implementation of sustainable design goals. Discuss sustainable design 

requirements in pre-bid meetings. Include criteria for vendors to conserve energy, water and other 
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natural resources during field construction activities. 

Incorporate sustainable design requirements in standard project specifications and material 

requisitions (MRs) to be included with purchase orders and contracts / sub-contracts, including 

sourcing from suppliers practicing sustainable manufacturing practices, which are located near the 

construction site. 

 

6 Construction 

Prepare a site master plan for orderly development of infrastructure and land use on the site for the 

construction phase and operations phase.  Prepare designs and specifications for temporary field 

facilities following sustainable design principles.  Locate temporary facilities in non-sensitive areas of 

the site and minimize temporary facilities by building permanent facilities early in the construction 

phase and using them for construction needs.  Include sustainable engineering considerations in 

responses to requests for information, field change requests and other design change documents. 

During construction, track embodied energy and CO2 content of construction materials; review 

supplier submittals and substitutions for impacts on energy and emissions performance goals.  Review 

field change requests for impacts on energy and emissions performance goals and plan for energy and 

emissions systems commissioning to verify performance during operation.  Commissioning activities 

may begin as early as the conceptual design phase when the commissioning agent reviews design 

documents for conformance with the sustainable design criteria.  During construction and start-up the 

commissioning agent verifies installation of energy and emissions related systems and confirms that 

they operate as specified. 

 

7 Conclusions 

Designing to meet the challenges of climate change does not require a completely new design process.  

Incorporating sustainable design considerations into the conventional design process can result in 

more energy efficient and lower GHG emitting designs if sustainable design performance goals are set 

early in the project development and regularly monitored to assure the evolving design continues to 

support achieving the goals.  Establishing an integrated sustainable design project team comprised of 

representatives from each engineering discipline, procurement, construction, the client and other 

stakeholders provides a working group to collaborate in evaluating design alternatives to optimize 

energy efficiency and minimize emissions. 

This integrated team develops sustainable design criteria early in the project, is involved in 

developing and maintaining an energy model and 3-D model with building information.  The team 

track GHG emissions and the embodied carbon and energy contents of materials by periodically 

updating relevant design calculations.  The team participates in development and periodic updates of 

the project life-cycle cost estimate to inform decisions about the feasibility of implementing 

sustainable design alternatives. 

All of these activities can be conducted in the context of an established design process and provide 

added value to clients in terms of energy and water efficiency.  While it may not be possible to fully 

embed sustainable design in the standard engineering work process without some cost and potentially 

schedule consequences for engineering, it is likely that when considered in the context of the overall 

life-cycle cost of a project, sustainable design will reduce life-cycle costs and produce significant 

benefits for climate change mitigation. 
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Table 1.  Climate Change Related Project Performance Metrics 

Category Metric 

Materials Materials used by weight (kg) or volume (m3) 

 Weight or volume percentage of materials used that have recycled input 

materials 

 Total weight of waste materials by type and disposal method 

Energy Direct energy consumption (kJ) by primary energy sources 

 Indirect energy consumption (kJ) by primary source 

 Energy exports (kJ) 

 Energy use per weight or volume of product produced (kJ/kg or kJ/m3) 

Water Total water withdrawal by source (m3) 

 Total water discharges by quality and destination (m3) 

Emissions Total direct and indirect greenhouse gas emissions by weight (tons CO2-

equivalents) 

 Indirect greenhouse gas emissions by weight (tons CO2-equivalents) 

 Greenhouse gas emissions per weight or volume of product produced (tons 

CO2-equivalents/kg) 

 Emissions of ozone-depleting substances by weight (kg) 

 Emissions of NOx, SOx, PM10, ozone, carbon monoxide and lead by 

weight (kg) 

 Emissions avoided (kg) 
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Table 2.  Industry Specific Greenhouse Gases as Identified in 2006 IPCC Guidelines for National 

Greenhouse Gas Inventories 

Industry Activity Greenhouse Gases 

Power Fuel combustion CO2, CH4, N2O, NOx, CO, 

NMVOC, SO2 

Fugitive emissions from fuel CO2, CH4, N2O, NOx, CO, 

NMVOC 

Mining & metals Industrial processes and 

product use 

CO2, CH4, N2O, HFCs, PFCs, 

SF6, Other halogenated gases, 

NOx, CO, NMVOC, SO2 

Metals industry CO2, CH4, N2O, HFCs, PFCs, 

SF6, Other halogenated gases, 

NOx, CO, NMVOC, SO2 

Oil, gas and chemicals Industrial process and product 

use 

CO2, CH4, N2O, HFCs, PFCs, 

SF6, Other halogenated gases, 

NOx, CO, NMVOC, SO2 

Chemical industry CO2, CH4, N2O, HFCs, PFCs, 

SF6, Other halogenated gases, 

NOx, CO, NMVOC, SO2 

Other Waste CO2, CH4, N2O, NOx, CO, 

NMVOC, SO2 

 

NMVOC:  non-methane volatile organic compounds 
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Table 3.  Source Classifications 

Category Principal Sources Include: 

Combustion Devices  

Stationary Devices Boilers, heaters, furnaces, reciprocating internal 

combustion engines and turbines, flares, 

incinerators, and thermal/catalytic oxidizers 

Essential Mobile Sources Barges, ships, railcars, and trucks for material 

transport; and planes/helicopters and other 

company vehicles  

Indirect Off-site generation of electricity, hot water and 

steam for onsite power and heat  

Vented Sources  

Process Vents Hydrogen plants, amine units, glycol 

dehydrators, fluid catalytic cracking unit and 

reformer regeneration, flexicoker coke burn  

Other Venting Crude oil, condensate, and petroleum product 

storage tanks, gas-driven pneumatic devices, 

chemical injection pumps, exploratory drilling, 

loading/ballasting/transit, loading racks  

Maintenance/Turnaround Decoking of furnace tubes, vessel and gas 

compressor depressurizing, well and pipeline 

blowdowns, tank cleaning, painting  

Non-Routine Activities Pressure relief valves, emergency shut-down 

devices  

Fugitive Sources  

Fugitive Emissions Valves, flanges, connectors, pumps, compressor 

seal leaks  

Other Non-Point Sources Wastewater treatment, surface impoundments 
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Figure 1.  Overview of Design Work Process with Sustainable Design Elements Embedded 


